Brand Name	A-COPPER 11	
Material Code		
Abbreviation	SNCA / SNCB / RNCA / RNCB	
Chemical Composition (mass components) in \%. Average values of alloy components		
Cu Balance	Ni 3	$\underset{?}{M n}$

Features and Application Notes

A-COPPER 11 is used as negative leg for the compensating lead for thermocouple types Pt10Rh-Pt and Pt13Rh-Pt. A-COPPER 11 is standardized in the temperature range between 0 and $+200^{\circ} \mathrm{C}$.

Form of Delivery

A-COPPER 11 is supplied in the form of wires with dimensions from 0.05 to $13.50 \mathrm{~mm} \emptyset$ in bare condition. Enamelled wires are available in dimensions between 0.05 and 1.50 mm Ø. A-COPPER 11 can also be supplied in form of stranded wire, ribbon, flat wire and rods. Please contact us for the range of dimensions.

Thermoelectrical ${ }^{11}$ and Electrical Values in Soft-Annealed Condition

EMF	EMF	EMF	EMF	versus Pt67/NIST 175

Physical Characteristics (Reference Values)

Density at $+20^{\circ} \mathrm{C}$	Melting point	Specific heat at $+20^{\circ} \mathrm{C}$	Thermal conductivity at $+20^{\circ} \mathrm{C}$	Average linear thermal expansion coefficient between $+20^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$	Magnetic at room temperature
$\mathrm{g} / \mathrm{cm}^{3}$	${ }^{\circ} \mathrm{C}$	J/g K	W/m K	10-6/K	
8.90	+1,080	0.38	arround 200.00	18.00	no

Mechanical Properties at $\mathbf{+ 2 0}{ }^{\circ} \mathrm{C}$ in Annealed Condition ${ }^{3)}$

Tensile strength		
	MPa	Elongation
\%		

Notes on Treatment // A-COPPER 11 is easy to process. The alloy can be soldered and brazed without difficulty. All known welding methods are applicable.

[^0]
[^0]: 1) The exact EMF values can be calculated with a "EMF-Software", which can be downloaded from our homepage.
 2) Reference at $0^{\circ} \mathrm{C}$.
 3) The mechanical values considerably depend on dimension. The indicated values refer to a dimension of 1.0 mm diameter.
