Brand Name	A-COPP	ER 11			
Material Code					
Abbreviation	SNCA / SNCB / RNCA / RNCB				
	hemical Composition (mass components) in %. verage values of alloy components				
Cu Balance	Ni 3	Mn 2			

Features and Application Notes

A-COPPER 11 is used as negative leg for the compensating lead for thermocouple types Pt10Rh-Pt and Pt13Rh-Pt. A-COPPER 11 is standardized in the temperature range between 0 and \pm 200 °C.

Form of Delivery

A-COPPER 11 is supplied in the form of wires with dimensions from 0.05 to 13.50 mm \emptyset in bare condition. Enamelled wires are available in dimensions between 0.05 and 1.50 mm \emptyset . A-COPPER 11 can also be supplied in form of stranded wire, ribbon, flat wire and rods. Please contact us for the range of dimensions.

Thermoelectrical¹⁾ and Electrical Values in Soft-Annealed Condition

EMF versus Cu/NIST 175 at +100 °C / mV ³⁾	EMF versus Pt67/NIST 175 at +100 °C / mV ³⁾	EMF versus Cu at $\pm 200 ^{\circ}\text{C} / \text{mV}^{3)}$	EMF versus Pt67/NIST 175 at +200 °C / mV ³⁾	Electrical resistivity in $\mu\Omega$ x cm at +20 °C
-0.646 / -0.647	0.127 / 0.126	-1.441 / -1.469	0.396 / 0.368	12.000
SC/RC	SC/RC	SC/RC	SC/RC	

Physical Characteristics (Reference Values)

Density at +20 °C	Melting point	Specific heat at +20 °C	Thermal conducti- vity at +20 °C	Average linear thermal expansion coefficient between +20 °C and +100 °C	Magnetic at room temperature
g/cm³	°C	J/g K	W/m K	10 ⁻⁶ /K	
8.90	+1,080	0.38	arround 200.00	18.00	no

Mechanical Properties at +20 °C in Annealed Condition3)

	Tensile strength MPa	Elongation %	Hardness HV10
hard	> 500	2	> 170
soft	320	33	90

Notes on Treatment // A-COPPER 11 is easy to process. The alloy can be soldered and brazed without difficulty. All known welding methods are applicable.

¹⁾ The exact EMF values can be calculated with a "EMF-Software", which can be downloaded from our homepage.

²⁾ Reference at 0 °C.

³⁾ The mechanical values considerably depend on dimension. The indicated values refer to a dimension of 1.0 mm diameter.