Brand Name	NICKEL 99.2					
Material Code	2.4066					
Abbreviation	Ni 99.2					
Chemical Composition (mass components) in %.						
Ni ≥ 99.2						

Features and Application Notes

NICKEL 99.2 is especially characterized by very high resistance to oxidation and chemical corrosion, relatively low resistivity and a very high temperature coefficient. The material is used in many different applications, for example for the manufacture of connections for heating elements. NICKEL 99.2 is magnetic up to approx. +360 °C. The maximum working temperature in air is +700 °C.

Form of Delivery

NICKEL 99.2 is supplied in the form of round wires in the range 0.05 to 5.00 mm \emptyset in bare or enamelled condition.

Electrical Resistance in Annealed Condition

Temperature coefficient of electrical resistance between	Electrical resistivity in: $\mu\Omega$ x cm (first line) and Ω /CMF (second line) Reference Values					
+20 °C and +105 °C 10 ⁻⁶ /K	+20 °C tolerance ±10 %	+100 °C	+200 °C	+300 °C	+400 °C	+500 °C
+4,700 to +5,800	9	13	19	26	33	38
	54	78	114	156	199	229

Physical Characteristics (Reference Values)

Density at		Melting point	Specific heat at +20 °C	Thermal conducti- vity ¹⁾ at +20 °C	Average linear thermal expansion coefficient between +20 °C and		Thermal EMF against copper at
					+100 °C	+400 °C	+20 °C
g/cm³	lb/cub in	°C	J/g K	W/m K	10 ⁻⁶ /K	10 ⁻⁶ /K	μV/K
8.90	0.32	+1,440	0.47	69.00	13.00	14.00	-23.00

Mechanical Properties at +20 °C in Annealed Condition

450	65,250	≈ 10	≈ 15	≈ 18	≥ 20	≥ 25
MPa	psi	0.020 to 0.063	> 0.063 to 0.125	> 0.125 to 0.50	> 0.50 to 1.00	> 1.00
Tensile Strenç	gth ²⁾	Elongation ($L_0 = 100 \text{ mm}$) % at nominal diameter in mm				

General Note // NICKEL 99.2 is not a standard resistance alloy. Therefore no resistance values are quoted. The weight values correspond to those of ISOTAN® wires of the same diameter.

can be soldered and brazed without difficulty. All known welding methods can be used.

Notes on Treatment // NICKEL 99.2 can be worked easily. This alloy

¹⁾ As with all pure metals, the thermal conductivity strongly depends on the purity and temperature.

²⁾ This value applies to wires of 2.0 mm diameter. For thinner wires the minimum values will substantially increase, depending on the dimensions.